Effect of meteorological variability on fine particulate matter simulations over the contiguous United States

This study quantifies the impact of meteorological variability on the Community Multiscale Air Quality (CMAQ) model-simulated particulate matter of aerodynamic diameter 2.5 m or smaller (particulate matter 2.5 [PM2.5]) over the contiguous United States (CONUS). The meteorological variability is represented using the Short-Range Ensemble Forecast (SREF) produced operationally by the National Oceanic and Atmospheric Administration. A hierarchical cluster analysis technique is applied to down-select a subset of the SREF members that objectively accounts for the overall meteorological forecast variability of SREF. Three SREF members are selected to drive off-line CMAQ simulations during January, April, July, and October 2016. Changes in emissions, vertical diffusion, and aerosol processes due to meteorological variability dominate changes in aerosol mass concentrations over 55-73% of the domain except in July when dry deposition dominates emissions and aerosol processes. Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) simulations reproduced the variability of surface temperature very well but overestimated the 10-m wind speed, precipitation, and at some sites the planetary boundary layer height. Averaged over CONUS, CMAQ simulations driven by all three meteorological configurations capture the observed daytime low and nighttime high PM2.5 mass concentrations but underestimated the observed concentrations likely due to faster advection and higher wet deposition in the model. PM2.5 levels across the three simulations agreed well during daytime but showed larger variability during nighttime due to dominance of aerosol, clouds, and advection processes in nighttime. The meteorology-induced variability in PM2.5 is estimated to be 0.08-24 g/m(3) over the CONUS with larger variability over the eastern United States.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Service #1 : Cheyenne: SGI ICE XA Cluster

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2019 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kumar, Rajesh
Lee, Jared A.
Delle Monache, Luca
Alessandrini, Stefano
Publisher UCAR/NCAR - Library
Publication Date 2019-05-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:20:31.059147
Metadata Record Identifier edu.ucar.opensky::articles:22609
Metadata Language eng; USA
Suggested Citation Kumar, Rajesh, Lee, Jared A., Delle Monache, Luca, Alessandrini, Stefano. (2019). Effect of meteorological variability on fine particulate matter simulations over the contiguous United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7gq6z9m. Accessed 24 April 2025.

Harvest Source