Eigenvector-spatial localisation

We present a new multiscale covariance localisation method for ensemble data assimilation that is based on the estimation of eigenvectors and subsequent projections, together with traditional spatial localisation applied with a range of localisation lengths. In short, we estimate the leading, large-scale eigenvectors from the sample covariance matrix obtained by spatially smoothing the ensemble (treating small scales as noise) and then localise the resulting sample covariances with a large length scale. After removing the projection of each ensemble member onto the leading eigenvectors, the process may be repeated using less smoothing and tighter localizations or, in a final step, using the resulting, residual ensemble and tight localisation to represent covariances in the remaining subspace. We illustrate the use of the new multiscale localisation method in simple numerical examples and in cycling data assimilation experiments with the Lorenz Model III. We also compare the proposed new method to existing multiscale localisation and to single-scale localisation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Harty, Travis
Morzfeld, Matthias
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2021-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:30:13.791266
Metadata Record Identifier edu.ucar.opensky::articles:24255
Metadata Language eng; USA
Suggested Citation Harty, Travis, Morzfeld, Matthias, Snyder, Chris. (2021). Eigenvector-spatial localisation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q81hft. Accessed 15 February 2025.

Harvest Source