Ensemble dressing of meteorological fields: Using spatial regression to estimate uncertainty in deterministic gridded meteorological datasets

Most datasets of surface meteorology are deterministic, yet many applications using these datasets require or can benefit from uncertainty estimates in meteorological fields. Motivated by this gap, we evaluated the use of a spatial regression method to estimate the uncertainty in precipitation and temperature fields of existing deterministic gridded meteorological datasets. Taking the widely used North American Land Data Assimilation System 2 (NLDAS-2) precipitation and temperature dataset as an example, we used the deterministic NLDAS-2 values to generate ensemble estimates for daily precipitation, mean temperature, and the diurnal temperature range. Our method is a form of ensemble dressing. Nine variations were tested to assess the impacts of sampling density on the estimates of the mean and uncertainty, and one strategy was selected to generate 100 ensemble members at 1/8° and daily resolution for the period 1979–2019, termed as the Ensemble Dressing of NLDAS-2 (EDN2). Compared with an independent station-based ensemble dataset, the ensemble dressing method produces reasonable uncertainty patterns for precipitation and underestimates uncertainty for temperature. For precipitation, the uncertainty increases with the increase in daily accumulation. For temperature, the uncertainty is relatively small in the warm season and large in the cold season. This ensemble dressing method is applicable to other deterministic gridded meteorological datasets. The generated spatiotemporally varying uncertainty information could support applications such as land surface and hydrologic modeling, data assimilation, and forecasting, especially where application models are tied to a specific meteorological dataset.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Hongli
Wood, Andrew W.
Newman, Andrew J.
Clark, Martyn P.
Publisher UCAR/NCAR - Library
Publication Date 2022-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:36:51.248619
Metadata Record Identifier edu.ucar.opensky::articles:25744
Metadata Language eng; USA
Suggested Citation Liu, Hongli, Wood, Andrew W., Newman, Andrew J., Clark, Martyn P.. (2022). Ensemble dressing of meteorological fields: Using spatial regression to estimate uncertainty in deterministic gridded meteorological datasets. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xs606d. Accessed 27 June 2025.

Harvest Source