Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses

Ensemble Kalman filter (EnKF) techniques have been proposed for obtaining atmospheric state estimates on the scale of individual convective storms from radar and other observations, but tests of these methods with observations of real convective storms are still very limited. In the current study, radar observations of the 8 May 2003 Oklahoma City tornadic supercell thunderstorm were assimilated into the National Severe Storms Laboratory (NSSL) Collaborative Model for Multiscale Atmospheric Simulation (NCOMMAS) with an EnKF method. The cloud model employed 1-km horizontal grid spacing, a single-moment bulk precipitation-microphysics scheme, and a base state initialized with sounding data. A 50-member ensemble was produced by randomly perturbing base-state wind profiles and by regularly adding random local perturbations to the horizontal wind, temperature, and water vapor fields in and near observed precipitation. In a reference experiment, only Doppler-velocity observations were assimilated into the NCOMMAS ensemble. Then, radar-reflectivity observations were assimilated together with Doppler-velocity observations in subsequent experiments. Influences that reflectivity observations have on storm-scale analyses were revealed through parameter-space experiments by varying observation availability, observation errors, ensemble spread, and choices for what model variables were updated when a reflectivity observation was assimilated. All experiments produced realistic storm-scale analyses that compared favorably with independent radar observations. Convective storms in the NCOMMAS ensemble developed more quickly when reflectivity observations and velocity observations were both assimilated rather than only velocity, presumably because the EnKF utilized covariances between reflectivity and unobserved model fields such as cloud water and vertical velocity in efficiently developing realistic storm features. Recurring spatial patterns in the differences between predicted and observed reflectivity were noted particularly at low levels, downshear of the supercell's updraft, in the anvil of moderate-to-light precipitation, where reflectivity in the model was typically lower than observed. Bias errors in the predicted rain mixing ratios and/or the size distributions that the bulk scheme associates with these mixing ratios are likely responsible for this reflectivity underprediction. When a reflectivity observation is assimilated, bias errors in the model fields associated with reflectivity (rain, snow, and hail-graupel) can be projected into other model variables through the ensemble covariances. In the current study, temperature analyses in the downshear anvil at low levels, where reflectivity was underpredicted, were very sensitive both to details of the assimilation algorithm and to ensemble spread in temperature. This strong sensitivity suggests low confidence in analyses of low-level cold pools obtained through reflectivity-data assimilation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Dowell, David
Wicker, Louis
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2011-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:46:54.779445
Metadata Record Identifier edu.ucar.opensky::articles:10660
Metadata Language eng; USA
Suggested Citation Dowell, David, Wicker, Louis, Snyder, Chris. (2011). Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7p26zmz. Accessed 22 March 2025.

Harvest Source