Environmental and internal controls on Lagrangian transitions from closed cell mesoscale cellular convection over subtropical oceans

Classifications of mesoscale cellular convection (MCC) for marine boundary layer clouds are produced using a supervised neural network algorithm applied to MODIS daytime liquid water path data. The classifier, used in prior studies, distinguishes closed, open, and cellular but disorganized MCC. This work uses trajectories in four eastern subtropical ocean basins to compare meteorological variables and the structures of boundary layers for trajectories that begin as closed cells but evolve into either open cells or disorganized cells or remain closed cells over one afternoon-afternoon cycle. Results show contrasts between the trajectory sets: Trajectories for MCC that remain closed cells are more frequently observed nearer coasts, whereas trajectories that break into open and disorganized cells begin farther offshore. The frequency at which closed cells transition to open cells is seasonally invariant. The fraction of trajectories that stay as closed MCC varies throughout the year in opposition to those that break into disorganized cells, so that their annual cycles are 180 degrees out of phase. Trajectories remain as closed cell more frequently in austral spring and boreal summer when the trade inversion is stronger. The closed-disorganized MCC breakup is associated with weaker subsidence, a weaker inversion, a drier free troposphere, and enhanced nighttime boundary layer deepening, consistent with a warming-drying mechanism. The closed-open transition occurs in meteorological conditions similar to closed-closed trajectories. However, prior to the transition, the closed-open trajectories exhibit stronger surface winds and lower cloud droplet concentrations and rain more heavily overnight. Results suggest that multiple, independent mechanisms drive changes in cloud amount and morphology.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Eastman, Ryan
McCoy, Isabel L.
Wood, Robert
Publisher UCAR/NCAR - Library
Publication Date 2021-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:34:20.876134
Metadata Record Identifier edu.ucar.opensky::articles:24642
Metadata Language eng; USA
Suggested Citation Eastman, Ryan, McCoy, Isabel L., Wood, Robert. (2021). Environmental and internal controls on Lagrangian transitions from closed cell mesoscale cellular convection over subtropical oceans. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7h135f5. Accessed 25 April 2025.

Harvest Source