ESM-SnowMIP: Assessing snow models and quantifying snow-related climate feedbacks

This paper describes ESM-SnowMIP, an international coordinated modelling effort to evaluate current snow schemes, including snow schemes that are included in Earth system models, in a wide variety of settings against local and global observations. The project aims to identify crucial processes and characteristics that need to be improved in snow models in the context of local-and global-scale modelling. A further objective of ESM-SnowMIP is to better quantify snow-related feedbacks in the Earth system. Although it is not part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6), ESM-SnowMIP is tightly linked to the CMIP6-endorsed Land Surface, Snow and Soil Moisture Model Intercomparison (LS3MIP).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : Weissfluhjoch dataset for ESM-SnowMIP

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Krinner, Gerhard
Derksen, Chris
Essery, Richard
Flanner, Mark
Hagemann, Stefan
Clark, Martyn
Hall, Alex
Rott, Helmut
Brutel-Vuilmet, Claire
Kim, Hyungjun
Ménard, Cécile B.
Mudryk, Lawrence
Thackeray, Chad
Wang, Libo
Arduini, Gabriele
Balsamo, Gianpaolo
Bartlett, Paul
Boike, Julia
Boone, Aaron
Chéruy, Frédérique
Colin, Jeanne
Cuntz, Matthias
Dai, Yongjiu
Decharme, Bertrand
Derry, Jeff
Ducharne, Agnès
Dutra, Emanuel
Fang, Xing
Fierz, Charles
Ghattas, Josephine
Gusev, Yeugeniy
Haverd, Vanessa
Kontu, Anna
Lafaysse, Matthieu
Law, Rachel
Lawrence, David M.
Li, Weiping
Marke, Thomas
Marks, Danny
Ménégoz, Martin
Nasonova, Olga
Nitta, Tomoko
Niwano, Masashi
Pomeroy, John
Raleigh, Mark S.
Schaedler, Gerd
Semenov, Vladimir
Smirnova, Tanya G.
Stacke, Tobias
Strasser, Ulrich
Svenson, Sean
Turkov, Dmitry
Wang, Tao
Wever, Nander
Yuan, Hua
Zhou, Wenyan
Zhu, Dan
Publisher UCAR/NCAR - Library
Publication Date 2018-12-10T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:18:59.942857
Metadata Record Identifier edu.ucar.opensky::articles:22188
Metadata Language eng; USA
Suggested Citation Krinner, Gerhard, Derksen, Chris, Essery, Richard, Flanner, Mark, Hagemann, Stefan, Clark, Martyn, Hall, Alex, Rott, Helmut, Brutel-Vuilmet, Claire, Kim, Hyungjun, Ménard, Cécile B., Mudryk, Lawrence, Thackeray, Chad, Wang, Libo, Arduini, Gabriele, Balsamo, Gianpaolo, Bartlett, Paul, Boike, Julia, Boone, Aaron, Chéruy, Frédérique, Colin, Jeanne, Cuntz, Matthias, Dai, Yongjiu, Decharme, Bertrand, Derry, Jeff, Ducharne, Agnès, Dutra, Emanuel, Fang, Xing, Fierz, Charles, Ghattas, Josephine, Gusev, Yeugeniy, Haverd, Vanessa, Kontu, Anna, Lafaysse, Matthieu, Law, Rachel, Lawrence, David M., Li, Weiping, Marke, Thomas, Marks, Danny, Ménégoz, Martin, Nasonova, Olga, Nitta, Tomoko, Niwano, Masashi, Pomeroy, John, Raleigh, Mark S., Schaedler, Gerd, Semenov, Vladimir, Smirnova, Tanya G., Stacke, Tobias, Strasser, Ulrich, Svenson, Sean, Turkov, Dmitry, Wang, Tao, Wever, Nander, Yuan, Hua, Zhou, Wenyan, Zhu, Dan. (2018). ESM-SnowMIP: Assessing snow models and quantifying snow-related climate feedbacks. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rx9g1x. Accessed 06 February 2025.

Harvest Source