Estimating error variances of a microwave sensor and dropsondes aboard the Global Hawk in hurricanes using the three-cornered hat method

This study estimates the random error variances and standard deviations (STDs) for four datasets: Global Hawk (GH) dropsondes (DROP), the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) aboard the GH, the fifth European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), and the Hurricane Weather Research and Forecasting (HWRF) Model, using the three-cornered hat (3CH) method. These estimates are made during the 2016 Sensing Hazards with Operational Unmanned Technology (SHOUT) season in the environment of four tropical cyclones from August to October. For temperature and specific and relative humidity, the ERA5, HWRF, and DROP datasets all have similar magnitudes of errors, with ERA5 having the smallest. The error STDs of temperature and specific humidity are less than 0.8 K and 1.0 g kg(-1) over most of the troposphere, while relative humidity error STDs increase from less than 5% near the surface to between 10% and 20% in the upper troposphere. The HAMSR bias-corrected data have larger errors, with estimated error STDs of temperature and specific humidity in the lower troposphere between 1.5 and 2.0 K and between 1.5 and 2.5 g kg(-1). HAMSR's relative humidity error STD increases from approximately 10% in the lower troposphere to 30% in the upper troposphere. The 3CH method error estimates are generally consistent with prior independent estimates of errors and uncertainties for the HAMSR and dropsonde datasets, although they are somewhat larger, likely due to the inclusion of representativeness errors (differences associated with different spatial and temporal scales represented by the data).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kren, Andrew C.
Anthes, Richard A.
Publisher UCAR/NCAR - Library
Publication Date 2021-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:28:41.326390
Metadata Record Identifier edu.ucar.opensky::articles:24388
Metadata Language eng; USA
Suggested Citation Kren, Andrew C., Anthes, Richard A.. (2021). Estimating error variances of a microwave sensor and dropsondes aboard the Global Hawk in hurricanes using the three-cornered hat method. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cz3bk3. Accessed 08 February 2025.

Harvest Source