Estimation of PM2.5 concentrations in New York State: Understanding the influence of vertical mixing on surface PM2.5 using machine learning

In New York State (NYS), episodic high fine particulate matter (PM2.5) concentrations associated with aerosols originated from the Midwest, Mid-Atlantic, and Pacific Northwest states have been reported. In this study, machine learning techniques, including multiple linear regression (MLR) and artificial neural network (ANN), were used to estimate surface PM2.5 mass concentrations at air quality monitoring sites in NYS during the summers of 2016-2019. Various predictors were considered, including meteorological, aerosol, and geographic predictors. Vertical predictors, designed as the indicators of vertical mixing and aloft aerosols, were also applied. Overall, the ANN models performed better than the MLR models, and the application of vertical predictors generally improved the accuracy of PM2.5 estimation of the ANN models. The leave-one-out cross-validation results showed significant cross-site variations and were able to present the different predictor-PM2.5 correlations at the sites with different PM2.5 characteristics. In addition, a joint analysis of regression coefficients from the MLR model and variable importance from the ANN model provided insights into the contributions of selected predictors to PM2.5 concentrations. The improvements in model performance due to aloft aerosols were relatively minor, probably due to the limited cases of aloft aerosols in current datasets.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hung, Wei-Ting
Lu, Cheng-Hsuan (Sarah)
Alessandrini, Stefano
Kumar, Rajesh
Lin, Chin-An
Publisher UCAR/NCAR - Library
Publication Date 2020-11-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:33.925352
Metadata Record Identifier edu.ucar.opensky::articles:23956
Metadata Language eng; USA
Suggested Citation Hung, Wei-Ting, Lu, Cheng-Hsuan (Sarah), Alessandrini, Stefano, Kumar, Rajesh, Lin, Chin-An. (2020). Estimation of PM2.5 concentrations in New York State: Understanding the influence of vertical mixing on surface PM2.5 using machine learning. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7h1359c. Accessed 21 April 2025.

Harvest Source