Evaluating forecast impact of assimilating Microwave Humidity Sounder (MHS) radiances with a regional ensemble Kalman filter data assimilation system

This study examines the impact of assimilating Microwave Humidity Sounder (MHS) radiances in a limited-area ensemble Kalman filter (EnKF) data assimilation system. Two experiments spanning 11 August-13 September 2008 were run over a domain featuring the Atlantic basin using a 6-h full cycling analysis and forecast system. Deterministic 72-h forecasts were initialized at 0000 and 1200 UTC for a comparison of forecast impact. The two experiments were configured identically with the exception of the inclusion of the MHS radiances (AMHS) in the second to isolate the impacts of the MHS radiance data. The results were verified against several sources, and statistical significance tests indicate the most notable differences are in the midlevel moisture fields. Both configurations were characterized by high moisture biases when compared to the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim, also known as ERA-I) specific humidity fields, as well as precipitable water vapor from an observationally based product. However, the AMHS experiment has midlevel moisture fields closer to the ERA-I and observation datasets. When reducing the verification domain to focus on the subtropical and easterly wave regions of the North Atlantic Ocean, larger improvements in midlevel moisture at nearly all lead times is seen in the AMHS simulation. Finally, when considering tropical cyclone forecasts, the AMHS configuration shows improvement in intensity forecasts at several lead times as well as improvements at early to intermediate lead times for minimum sea level pressure forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Newman, Kathryn M.
Schwartz, Craig S.
Liu, Zhiquan
Shao, Hui
Huang, X.
Publisher UCAR/NCAR - Library
Publication Date 2015-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:55:36.639635
Metadata Record Identifier edu.ucar.opensky::articles:16850
Metadata Language eng; USA
Suggested Citation Newman, Kathryn M., Schwartz, Craig S., Liu, Zhiquan, Shao, Hui, Huang, X.. (2015). Evaluating forecast impact of assimilating Microwave Humidity Sounder (MHS) radiances with a regional ensemble Kalman filter data assimilation system. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7cv4jzv. Accessed 23 August 2025.

Harvest Source