Evaluating mesoscale NWP models using kinetic energy spectra

Kinetic energy spectra derived from observations in the free atmosphere possess a wavenumber dependence of k^-3 for large scales, characteristic of 2D turbulence, and transition to a k^-5/3 dependence in the mesoscale. Kinetic energy spectra computed using mesoscale and experimental near-cloud-scale NWP forecasts from the Weather Research and Forecast (WRF) model are examined, and it is found that the model-derived spectra match the observational spectra well, including the transition. The model spectra decay at the highest resolved wavenumbers compared with observations, indicating energy removal by the model's dissipation mechanisms. This departure from the observed spectra is used to define the model's effective resolution. Various dissipation mechanisms used in NWP models are tested in WRF model simulations to examine the mechanisms' impact on a model's effective resolution. The spinup of the spectra in forecasts is also explored, along with spectra variability in the free atmosphere and in forecasts under different synoptic regimes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2004 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ยง108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Skamarock, William
Publisher UCAR/NCAR - Library
Publication Date 2004-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:23:43.732749
Metadata Record Identifier edu.ucar.opensky::articles:10255
Metadata Language eng; USA
Suggested Citation Skamarock, William. (2004). Evaluating mesoscale NWP models using kinetic energy spectra. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7k074tg. Accessed 15 February 2025.

Harvest Source