Evaluating stratospheric tropical width using tracer concentrations

Quantifying the width of the tropics has important implications for understanding climate variability and the atmospheric response to anthropogenic forcing. Considerable effort has been placed on quantifying the width of the tropics at tropospheric levels, but substantially less effort has been placed on quantifying the width at stratospheric levels. Here we probe tropical width in the stratosphere using chemical tracers, which are accessible by direct measurement. Two new tracer-based width metrics are developed, denoted here as the "1 sigma method" and the gradient weighted latitude (GWL) method. We evaluate widths from three tracers, CH4, N2O, and SF6. We demonstrate that unlike previously proposed stratospheric width methods using tracers, these metrics perform consistently throughout the depth of the stratosphere, at all times of year and on coarse temporal data. The GWL tracer-based widths correlate well with the turnaround latitude and the critical level, where wave dissipation occurs, in the upper and midstratosphere during certain months of the year. In the lower stratosphere, the deseasonalized tracer-based widths near the tropical tropopause correlate with the deseasonalized tropopause-height based metrics. We also find that tracer-tracer width correlations are strongest at pressure levels where their chemical lifetimes are similar. These metrics represent another useful way to estimate stratospheric tropical width and explore any changes under anthropogenic forcing.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shah, Kasturi S.
Solomon, Susan
Thompson, David W. J.
Kinnison, Douglas E.
Publisher UCAR/NCAR - Library
Publication Date 2020-11-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:14:17.394533
Metadata Record Identifier edu.ucar.opensky::articles:23805
Metadata Language eng; USA
Suggested Citation Shah, Kasturi S., Solomon, Susan, Thompson, David W. J., Kinnison, Douglas E.. (2020). Evaluating stratospheric tropical width using tracer concentrations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rn3c6w. Accessed 16 March 2025.

Harvest Source