Evaluation of orographic cloud seeding using a bin microphysics scheme: Three-dimensional simulation of real cases

The University of Pécs and NCAR Bin (UPNB) microphysical scheme was implemented into the mesoscale Weather Research and Forecast (WRF) Model that was used to study the impact of silver iodide (AgI) seeding on precipitation formation in winter orographic clouds. Four different experimental units were chosen from the Wyoming Weather Modification Pilot Project to simulate the seeding effect. The results of the numerical experiments show the following: (i) Comparisons with the soundings, snow gauges, and microwave radiometer data indicate that the three-dimensional simulations with detailed microphysics reasonably represent both the dynamics and the microphysics of real clouds. (ii) The dispersion of the AgI particles from the simulated ground-based seeding was effective because of turbulent mixing. (iii) In the investigated cases (surface temperature is less than 0°C), surface precipitation and precipitation efficiency show low susceptibility to the concentrations of cloud condensation nuclei and natural ice nucleating particles. (iv) If the available liquid water content promotes the enhancement of the number of snowflakes by diffusional growth, the surface precipitation can be increased by more than 5%. A novel parameter relevant to orographic clouds, horizontally integrated liquid water path (LWP), was evaluated to find the relation between seeding efficiency and liquid water content. The impact of seeding is negligible if the horizontal LWP is less than 0.1 mm and is apparent if the horizontal LWP is larger than 1 mm, as based on the cases investigated in this study.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Geresdi, István
Xue, Lulin
Sarkadi, Noémi
Rasmussen, Roy
Publisher UCAR/NCAR - Library
Publication Date 2020-09-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:32:44.251628
Metadata Record Identifier edu.ucar.opensky::articles:23738
Metadata Language eng; USA
Suggested Citation Geresdi, István, Xue, Lulin, Sarkadi, Noémi, Rasmussen, Roy. (2020). Evaluation of orographic cloud seeding using a bin microphysics scheme: Three-dimensional simulation of real cases. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w0997g. Accessed 20 March 2025.

Harvest Source