Evaluation of planetary boundary layer simulation in GFDL atmospheric general circulation models

This study describes the performance of two Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation models (AGCMs) in simulating the climatologies of planetary boundary layer (PBL) parameters, with a particular focus on the diurnal cycles. The two models differ solely in the PBL parameterization: one uses a prescribed K-profile parameterization (KPP) scheme with an entrainment parameterization, and the other employs a turbulence kinetic energy (TKE) scheme. The models are evaluated through comparison with the reanalysis ensemble, which is generated from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century reanalysis (ERA-20C), ERA-Interim, NCEP CFSR, and NASA MERRA, and the following systematic biases are identified. The models exhibit widespread cold biases in the high latitudes, and the biases are smaller when the KPP scheme is used. The diurnal cycle amplitudes are underestimated in most dry regions, and the model with the TKE scheme simulates larger amplitudes. For the near-surface winds, the models underestimate both the daily means and the diurnal amplitudes; the differences between the models are relatively small compared to the biases. The role of the PBL schemes in simulating the PBL parameters is investigated through the analysis of vertical profiles. The Sahara, which is suitable for focusing on the role of vertical mixing in dry PBLs, is selected for a detailed analysis. It reveals that compared to the KPP scheme, the heat transport is weaker with the TKE scheme in both convective and stable PBLs as a result of weaker vertical mixing, resulting in larger diurnal amplitudes. Lack of nonlocal momentum transport from the nocturnal low-level jets to the surfaces appears to explain the underestimation of the near-surface winds in the models.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shin, Hyeyum Hailey
Ming, Yi
Zhao, Ming
Golaz, Jean-Christophe
Xiang, Baoqiang
Guo, Huan
Publisher UCAR/NCAR - Library
Publication Date 2018-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:22:26.158096
Metadata Record Identifier edu.ucar.opensky::articles:21807
Metadata Language eng; USA
Suggested Citation Shin, Hyeyum Hailey, Ming, Yi, Zhao, Ming, Golaz, Jean-Christophe, Xiang, Baoqiang, Guo, Huan. (2018). Evaluation of planetary boundary layer simulation in GFDL atmospheric general circulation models. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7930x04. Accessed 14 May 2025.

Harvest Source