Evaluation of polar winter mesopause wind in WACCMX+DART

This work evaluates zonal winds in both hemispheres near the polar winter mesopause in the Whole Atmosphere Community Climate Model (WACCM) with thermosphere-ionosphere eXtension combined with data assimilation using the Data Assimilation Research Testbed (DART) (WACCMX+DART). We compare 14 years (2006-2019) of WACCMX+DART zonal mean zonal winds near 90 km to zonal mean zonal winds derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) geopotential height measurements during Arctic mid-winter. 10 years (2008-2017) of WACCMX+DART zonal mean zonal winds are compared to SABER in the Antarctic mid-winter. It is well known that WACCM, and WACCM-X, zonal winds at the polar winter mesopause exhibit a strong easterly (westward) bias. One explanation for this is that the models omit higher order gravity waves (GWs), and thus the eastward drag caused by these GWs. We show for the first time that the model winds near the polar winter mesopause are in closer agreement with SABER observations when the winds near the stratopause are weak or reversed. The model and observed mesosphere and lower thermosphere winds agree most during dynamically disturbed times often associated with minor or major sudden stratospheric warming events. Results show that the deceleration of the stratospheric and mesospheric polar night jet allows enough eastward GWs to propagate into the mesosphere, driving eastward zonal winds that are in agreement with the observations. Thus, in both hemispheres, the winter polar night jet speed and direction near the stratopause may be a useful proxy for model fidelity in the polar winter upper mesosphere.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Harvey, V. Lynn
Pedatella, Nick
Becker, Erich
Randall, Cora
Publisher UCAR/NCAR - Library
Publication Date 2022-08-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:18:20.655980
Metadata Record Identifier edu.ucar.opensky::articles:25621
Metadata Language eng; USA
Suggested Citation Harvey, V. Lynn, Pedatella, Nick, Becker, Erich, Randall, Cora. (2022). Evaluation of polar winter mesopause wind in WACCMX+DART. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7765k43. Accessed 12 December 2024.

Harvest Source