Evaluation of present-day extreme precipitation over the United States: An inter-comparison of convection and dynamic permitting configurations of E3SMv1

Accurate simulation of the present-day characteristics of mean and extreme precipitation at regional scales remains a challenge for Earth system models, which is due in part to deficiencies in model physics such as convective parameterization (CP), and coarse resolution. High horizontal resolution (HR, ∼25 km) and multiscale modeling framework (MMF, i.e. replacing conventional CP with embedded km-scale cloud-resolving models) are two promising directions that could help improve the interaction between subgrid-scale physical processes and large-scale climate. Here, we evaluate simulated extreme precipitation over the United States (US) across three configurations (i.e. low-resolution [LR], HR, and MMF) of the Energy Exascale Earth System Model (E3SMv1) and intercompare them against two gridded observation datasets (climate prediction center daily US precipitation and integrated multi-satellite retrievals for global precipitation measurement). We assess the model’s ability to simulate very heavy seasonal precipitation (illustrated by the difference between the 99th and 90th percentile values) as well as the spatial distributions of several extreme precipitation indices defined by the expert team on climate change detection and indices. Our results show that both the dry (i.e. consecutive dry days (CDD)) and wet (i.e. consecutive wet days, maximum 5 day precipitation, and very wet days) extremes evaluated herein show some improvement as well as degradation with MMF and HR relative to LR. These results vary across seasons and US subregions. For instance, only the very heavy precipitation of winter is improved with MMF and HR. Both configurations alleviate the well-known drizzling bias evident in LR across both winter and summer in many parts of the US, largely due to the overall improvement in intensity and frequency of precipitation. Additionally, our results suggest that while E3SMv1-MMF has higher intensity rates when it does rain, it has too many CDD during the summer, contributing to a low mean precipitation bias.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06

Related Software #1 : Energy Exascale Earth System Model v1.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Akinsanola, A. A.
Kooperman, G. J.
Hannah, W. M.
Reed, K. A.
Pendergrass, Angeline
Wei-Ching, H.
Publisher UCAR/NCAR - Library
Publication Date 2024-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T20:03:50.494825
Metadata Record Identifier edu.ucar.opensky::articles:42427
Metadata Language eng; USA
Suggested Citation Akinsanola, A. A., Kooperman, G. J., Hannah, W. M., Reed, K. A., Pendergrass, Angeline, Wei-Ching, H.. (2024). Evaluation of present-day extreme precipitation over the United States: An inter-comparison of convection and dynamic permitting configurations of E3SMv1. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7f1942g. Accessed 03 August 2025.

Harvest Source