Examining the impacts of great lakes temperature perturbations on simulated precipitation in the Northeastern United States

Most inland water bodies are not resolved by general circulation models, requiring that lake surface temperatures be estimated. Given the large spatial and temporal variability of the surface temperatures of the North American Great Lakes, such estimations can introduce errors when used as lower boundary conditions for dynamical downscaling. Lake surface temperatures (LSTs) influence moisture and heat fluxes, thus impacting precipitation within the immediate region and potentially in regions downwind of the lakes. For this study, the Advanced Research version of the Weather Research and Forecasting Model (WRF-ARW) was used to simulate precipitation over the six New England states during a 5-yr historical period. The model simulation was repeated with perturbed LSTs, ranging from 10 degrees C below to 10 degrees C above baseline values obtained from reanalysis data, to determine whether the inclusion of erroneous LST values has an impact on simulated precipitation and synoptic-scale features. Results show that simulated precipitation in New England is statistically correlated with LST perturbations, but this region falls on a wet-dry line of a larger bimodal distribution. Wetter conditions occur to the north and drier conditions occur to the south with increasing LSTs, particularly during the warm season. The precipitation differences coincide with large-scale anomalous temperature, pressure, and moisture patterns. Care must therefore be taken to ensure reasonably accurate Great Lakes surface temperatures when simulating precipitation, especially in southeastern Canada, Maine, and the mid-Atlantic region.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hanrahan, Janel
Langlois, Jessica
Cornell, Lauren
Huang, Huanping
Winter, Jonathan M.
Clemins, Patrick J.
Beckage, Brian
Bruyère, Cindy
Publisher UCAR/NCAR - Library
Publication Date 2021-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:28:47.475220
Metadata Record Identifier edu.ucar.opensky::articles:24608
Metadata Language eng; USA
Suggested Citation Hanrahan, Janel, Langlois, Jessica, Cornell, Lauren, Huang, Huanping, Winter, Jonathan M., Clemins, Patrick J., Beckage, Brian, Bruyère, Cindy. (2021). Examining the impacts of great lakes temperature perturbations on simulated precipitation in the Northeastern United States. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7br8wmp. Accessed 15 March 2025.

Harvest Source