Examining the magnetic signal due to gravity and plasma pressure gradient current with the TIE-GCM

Accurate magnetic field measurements at ground and low-Earth orbit (LEO) are crucial to describe Earth's magnetic field. One of the challenges with processing LEO magnetic field measurements to study Earth's magnetic field is that the satellite flies in regions of highly varying ionospheric currents, which needs to be characterized accurately. The present study focuses on ionospheric current systems due to gravity and plasma pressure gradient forcing and aims to provide guidance on the estimation of their magnetic effect at LEO altitudes with the help of numerical modeling. We assess the diamagnetic approximation that estimates the magnetic signal of the plasma pressure gradient current. The simulations indicate that the diamagnetic effect should not be removed from LEO magnetic observations without considering the gravity current effect, as this will lead to an error larger than the magnetic signal of these currents. We introduce and evaluate a method to capture the magnetic effect of the gravity-driven current. The diamagnetic and gravity current approximations ignore the magnetic effect from currents set up by the induced electric field. The combined gravity and plasma pressure gradient magnetic effect tends to cancel above the F region peak; however, between approximately 300 km and the peak it exhibits a significant height and latitudinal variation with magnitudes up to 8 nT. During solar minimum the combined magnetic signal is less than 1 nT above 300 km. In addition to the solar cycle dependence, the magnetic signal strength varies with longitude (approximately by 50%) and season (up to 80%) at solar maximum.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Maute, Astrid
Richmond, Arthur D.
Publisher UCAR/NCAR - Library
Publication Date 2017-12-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:17:07.299143
Metadata Record Identifier edu.ucar.opensky::articles:21261
Metadata Language eng; USA
Suggested Citation Maute, Astrid, Richmond, Arthur D.. (2017). Examining the magnetic signal due to gravity and plasma pressure gradient current with the TIE-GCM. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7np2711. Accessed 15 February 2025.

Harvest Source