Experimentally determined site-specific reactivity of the gas-phase OH and Cl + i-butanol reactions between 251 and 340 K

Product branching ratios for the gas-phase reactions of i-butanol, (CH3)2CHCH2OH, with OH radicals (251, 294, and 340 K) and Cl atoms (294 K) were quantified in an environmental chamber study and used to interpret i-butanol site-specific reactivity. i-Butyraldehyde, acetone, acetaldehyde, and formaldehyde were observed as major stable end products in both reaction systems with carbon mass balance indistinguishable from unity. Product branching ratios for OH oxidation were found to be temperature-dependent with the α, β, and γ channels changing from 34 ± 6 to 47 ± 1%, from 58 ± 6 to 37 ± 9%, and from 8 ± 1 to 16 ± 4%, respectively, between 251 and 340 K. Recommended temperature-dependent site-specific modified Arrhenius expressions for the OH reaction rate coefficient are (cm3 molecule-1 s-1): kα(T) = 8.64 × 10-18 × T1.91exp(666/T); kβ(T) = 5.15 × 10-19 × T2.04exp(1304/T); kγ(T) = 3.20 × 10-17 × T1.78exp(107/T); kOH(T) = 2.10 × 10-18 × T2exp(−23/T), where kTotal(T) = kα(T) + kβ(T) + kγ(T) + kOH(T). The expressions were constrained using the product branching ratios measured in this study and previous total phenomenological rate coefficient measurements. The site-specific expressions compare reasonably well with recent theoretical work. It is shown that use of i-butanol would result in acetone as the dominant degradation product under most atmospheric conditions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Chemical Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author McGillen, Max R.
Tyndall, Geoffrey S.
Orlando, John J.
Pimentel, Andre S.
Medeiros, Diogo J.
Burkholder, James B.
Publisher UCAR/NCAR - Library
Publication Date 2016-12-22T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:03.457704
Metadata Record Identifier edu.ucar.opensky::articles:19353
Metadata Language eng; USA
Suggested Citation McGillen, Max R., Tyndall, Geoffrey S., Orlando, John J., Pimentel, Andre S., Medeiros, Diogo J., Burkholder, James B.. (2016). Experimentally determined site-specific reactivity of the gas-phase OH and Cl + i-butanol reactions between 251 and 340 K. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7k35wfx. Accessed 14 March 2025.

Harvest Source