Exploring a lower-resolution physics grid in CAM-SE-CSLAM

This paper describes the implementation of a coarser-resolution physics grid into the Community Atmosphere Model (CAM), containing urn:x-wiley:jame:media:jame20916:jame20916-math-0001 fewer grid columns than the dynamics grid. The dry dynamics is represented by the spectral element dynamical core, and tracer transport is computed using the Conservative Semi-Lagrangian Finite Volume Method (CAM-SE-CSLAM). Algorithms are presented that map fields between the dynamics and physics grids while maintaining numerical properties ideal for atmospheric simulations such as mass conservation and mixing ratio shape and linear-correlation preservation. The results of experiments using the lower-resolution physics grid are compared to the conventional method in which the physics and dynamical grids coincide. The lower-resolution physics grid provides a volume mean state to the physics computed from an equal sampling of the different types of nodal solutions arising in the spectral-element method and effectively mitigates grid imprinting in regions with steep topography. The impact of the coarser-resolution physics grid on the resolved scales of motion is analyzed in an aquaplanet configuration, across a range of dynamical core grid resolutions. The results suggest that the effective resolution of the model is not degraded through the use of a coarser-resolution physics grid. Since the physics makes up about half the computational cost of the conventional CAM-SE-CSLAM configuration, the coarser physics grid may allow for significant cost savings with little to no downside.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Software #1 : Community Earth System Model - CESM2.0

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Herrington, Adam R.
Lauritzen, Peter H.
Reed, K. A.
Goldhaber, Steve
Eaton, Brian E.
Publisher UCAR/NCAR - Library
Publication Date 2019-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:28:02.310223
Metadata Record Identifier edu.ucar.opensky::articles:22750
Metadata Language eng; USA
Suggested Citation Herrington, Adam R., Lauritzen, Peter H., Reed, K. A., Goldhaber, Steve, Eaton, Brian E.. (2019). Exploring a lower-resolution physics grid in CAM-SE-CSLAM. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7rb76xn. Accessed 23 August 2025.

Harvest Source