Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types

Temperature is a dominant factor driving arctic and boreal ecosystem phenology, including leaf budburst and gross primary production (GPP) onset in Alaskan spring. Previous studies hypothesized that both accumulated growing degree day (GDD) and cold temperature (chilling) exposure are important to leaf budburst. We test this hypothesis by combining both satellite and aircraft vegetation measurements with the Community Land Model Version 4.5 (CLM), in which the end of plant dormancy depends on thermal conditions (i.e. GDD). We study the sensitivity of GPP onset of different Alaskan deciduous vegetation types to a GDD model with chilling requirement (GC model) included. The default CLM simulations have a 1-12 d earlier day of year GPP onset over Alaska vegetated regions compared to satellite constrained estimates from the Polar Vegetation Photosynthesis and Respiration Model. Integrating a GC model into CLM shifts the phase and amplitude of GPP. During 2007-2016, mean GPP onset is postponed by 5 +/- 7, 4 +/- 8, and 1 +/- 6 d over Alaskan northern tundra, shrub, and forest, respectively. The GC model has the greatest impact during warm springs, which is critical for predicting phenology response to future warming. Overall, spring GPP high bias is reduced by 10%. Thus, including chilling requirement in thermal forcing models improves northern high-latitude phenology, but leads to other impacts during the growing season which require further investigation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Shi, Mingjie
Parazoo, Nicholas C
Jeong, Su-Jong
Birch, Leah
Lawrence, Peter
Euskirchen, Eugenie S
Miller, Charles E
Publisher UCAR/NCAR - Library
Publication Date 2020-02-07T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:12.928260
Metadata Record Identifier edu.ucar.opensky::articles:23228
Metadata Language eng; USA
Suggested Citation Shi, Mingjie, Parazoo, Nicholas C, Jeong, Su-Jong, Birch, Leah, Lawrence, Peter, Euskirchen, Eugenie S, Miller, Charles E. (2020). Exposure to cold temperature affects the spring phenology of Alaskan deciduous vegetation types. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71n84b5. Accessed 25 January 2025.

Harvest Source