External influences on thermally driven flows in a deep valley

The dynamics that govern the evolution of nighttime flows in a deep valley, California's Owens Valley, are analyzed. Measurements from the Terrain-Induced Rotor Experiment (T-REX) reveal a pronounced valley-wind system with often nonclassical flow evolution. Two cases with a weak high pressure ridge over the study area but very different valley flow evolution are presented. The first event is characterized by the appearance of a layer of southerly flow after midnight local time, sandwiched between a thermally driven low-level downvalley (northerly) flow and a synoptic northwesterly flow aloft. The second event is characterized by an unusually strong and deep downvalley jet, exceeding 15 m s(-1). The analysis is based on the T-REX measurement data and the output of high-resolution large-eddy simulations using the Advanced Regional Prediction System (ARPS). Using horizontal grid spacings of 1 km and 350 m, ARPS reproduces the observed flow features for these two cases very well. It is found that the low-level along-valley forcing of the valley wind is the result of a superposition of the local thermal forcing and a midlevel (2-2.5 km MSL) along-valley pressure forcing. The analysis shows that the large difference in valley flow evolution derives primarily from differences in the midlevel pressure forcing, and that the Owens Valley is particularly susceptible to these midlevel external influences because of its specific geometry. The results demonstrate the delicate interplay of forces that can combine to determine the valley flow structure on any given night.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Juerg, Schmidli
Poulos, Gregory
Daniels, Megan
Chow, Fotini
Publisher UCAR/NCAR - Library
Publication Date 2009-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:27:18.012597
Metadata Record Identifier edu.ucar.opensky::articles:15803
Metadata Language eng; USA
Suggested Citation Juerg, Schmidli, Poulos, Gregory, Daniels, Megan, Chow, Fotini. (2009). External influences on thermally driven flows in a deep valley. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7np25hg. Accessed 23 May 2025.

Harvest Source