Fabry-Pérot versus slit spectropolarimetry of pores and active network: Analysis of IBIS and Hinode data

We discuss spectropolarimetric measurements of photospheric (Fe I 630.25 nm) and chromospheric (Ca II 854.21 nm) spectral lines in and around small magnetic flux concentrations, including a pore. Our long-term goal is to diagnose properties of the magnetic field near the base of the corona. We compare ground-based two-dimensional spectropolarimetric measurements with (almost) simultaneous space-based slit spectropolarimetry. We address the question of noise and crosstalk in the measurements and attempt to determine the suitability of Ca II measurements with imaging spectropolarimeters for the determination of chromospheric magnetic fields. The ground-based observations were obtained 2008 May 20, with the Interferometric Bidimensional Spectrometer (IBIS) in spectropolarimetric mode operated at the Dunn Solar Telescope at Sunspot, NM. The space observations were obtained with the Spectro-Polarimeter of the Solar Optical Telescope aboard the Japanese Hinode satellite. The agreement between the near-simultaneous co-spatial IBIS and Hinode Stokes-V profiles at 630.25 nm is excellent, with V/I amplitudes compatible to within 1%. The IBIS QU measurements are affected by residual crosstalk from V, arising from calibration inaccuracies, not from any inherent limitation of imaging spectroscopy. We use a Principal Component Analysis to quantify the detected crosstalk. QU profiles with V crosstalk subtracted are in good agreement with the Hinode measurements, but are noisier owing to fewer collected photons. Chromospheric magnetic fields are notoriously difficult to constrain by polarization of Ca II lines alone. However, we demonstrate that high cadence, high angular resolution monochromatic images of fibrils in Ca II and Hα, seen clearly in IBIS observations, can be used to improve the magnetic field constraints, under conditions of high electrical conductivity. Such work is possible only with time series data sets from two-dimensional spectroscopic instruments such as IBIS, under conditions of good seeing.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Published by the Institute of Physics for the American Astronomical Society. Copyright 2010 The American Astronomical Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Judge, Philip
Tritschler, Alexandra
Uitenbroek, Han
Reardon, Kevin
Cauzzi, Gianna
deWijn, Alfred
Publisher UCAR/NCAR - Library
Publication Date 2010-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:39.026215
Metadata Record Identifier edu.ucar.opensky::articles:10341
Metadata Language eng; USA
Suggested Citation Judge, Philip, Tritschler, Alexandra, Uitenbroek, Han, Reardon, Kevin, Cauzzi, Gianna, deWijn, Alfred. (2010). Fabry-Pérot versus slit spectropolarimetry of pores and active network: Analysis of IBIS and Hinode data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7r78fn9. Accessed 21 April 2025.

Harvest Source