HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009

We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80km) atmospheric models with observations of odd nitrogen (NOx= NO+NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20%. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Funke, Bernd
Ball, William
Bender, Stefan
Gardini, Angela
Harvey, V. Lynn
Lambert, Alyn
López-Puertas, Manuel
Marsh, Daniel R.
Meraner, Katharina
Nieder, Holger
Päivärinta, Sanna-Mari
Pérot, Kristell
Randall, Cora E.
Reddmann, Thomas
Rozanov, Eugene
Schmidt, Hauke
Seppälä, Annika
Sinnhuber, Miriam
Sukhodolov, Timofei
Stiller, Gabriele P.
Tsvetkova, Natalia D.
Verronen, Pekka T.
Versick, Stefan
von Clarmann, Thomas
Walker, Kaley A.
Yushkov, Vladimir
Publisher UCAR/NCAR - Library
Publication Date 2017-03-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:11:07.113654
Metadata Record Identifier edu.ucar.opensky::articles:19514
Metadata Language eng; USA
Suggested Citation Funke, Bernd, Ball, William, Bender, Stefan, Gardini, Angela, Harvey, V. Lynn, Lambert, Alyn, López-Puertas, Manuel, Marsh, Daniel R., Meraner, Katharina, Nieder, Holger, Päivärinta, Sanna-Mari, Pérot, Kristell, Randall, Cora E., Reddmann, Thomas, Rozanov, Eugene, Schmidt, Hauke, Seppälä, Annika, Sinnhuber, Miriam, Sukhodolov, Timofei, Stiller, Gabriele P., Tsvetkova, Natalia D., Verronen, Pekka T., Versick, Stefan, von Clarmann, Thomas, Walker, Kaley A., Yushkov, Vladimir. (2017). HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cf9rxn. Accessed 23 June 2025.

Harvest Source