How suitable is quantile mapping For postprocessing GCM precipitation forecasts?

GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called "coherence.'' This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhao, Tongtiegang
Bennett, James C.
Wang, Q. J.
Schepen, Andrew
Wood, Andrew W.
Robertson, David E.
Ramos, Maria-Helena
Publisher UCAR/NCAR - Library
Publication Date 2017-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2020-02-12T21:19:29.811087
Metadata Record Identifier edu.ucar.opensky::articles:19799
Metadata Language eng; USA
Suggested Citation Zhao, Tongtiegang, Bennett, James C., Wang, Q. J., Schepen, Andrew, Wood, Andrew W., Robertson, David E., Ramos, Maria-Helena. (2017). How suitable is quantile mapping For postprocessing GCM precipitation forecasts?. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d72j6dst. Accessed 29 February 2020.

Harvest Source