Impact of a stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts

The efficacy of a stochastic kinetic energy backscatter (SKEB) scheme to improve convection-allowing probabilistic forecasts was studied. While SKEB has been explored for coarse, convection-parameterizing models, studies of SKEB for convective scales are limited. Three ensembles were compared. The SKMP ensemble used mixed physics with the SKEB scheme, whereas the MP ensemble was configured identically but without using the SKEB scheme. The SK ensemble used the SKEB scheme with no physics diversity. The experiment covered May 2013 over the central United States on a 4-km Weather Research and Forecasting (WRF) Model domain. The SKEB scheme was successful in increasing the spread in all fields verified, especially mid- and upper-tropospheric fields. Additionally, the rmse of the ensemble mean was maintained or reduced, in some cases significantly. Rank histograms in the SKMP ensemble were flatter than those in the MP ensemble, indicating the SKEB scheme produces a less underdispersive forecast distribution. Some improvement was seen in probabilistic precipitation forecasts, particularly when examining Brier scores. Verification against surface observations agree with verification against Rapid Refresh (RAP) model analyses, showing that probabilistic forecasts for 2-m temperature, 2-m dewpoint, and 10-m winds were also improved using the SKEB scheme. The SK ensemble gave competitive forecasts for some fields. The SK ensemble had reduced spread compared to the MP ensemble at the surface due to the lack of physics diversity. These results suggest the potential utility of mixed physics plus the SKEB scheme in the design of convection-allowing ensemble forecasts.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Duda, Jeffrey
Wang, Xuguang
Kong, Fanyou
Xue, Ming
Berner, Judith
Publisher UCAR/NCAR - Library
Publication Date 2016-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:26.605851
Metadata Record Identifier edu.ucar.opensky::articles:18468
Metadata Language eng; USA
Suggested Citation Duda, Jeffrey, Wang, Xuguang, Kong, Fanyou, Xue, Ming, Berner, Judith. (2016). Impact of a stochastic kinetic energy backscatter scheme on warm season convection-allowing ensemble forecasts. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7js9s1d. Accessed 07 May 2024.

Harvest Source