Impact of swell on air-sea momentum flux and marine boundary layer under low-wind conditions

The impact of fast-propagating swell on the air–sea momentum exchange and the marine boundary layer is examined based on multiple large-eddy simulations over a range of wind speed and swell parameters in the light-wind--fast-wave regime. A wave-driven supergeostrophic jet forms near the top of the wave boundary layer when the forwarding-pointing (i.e., negative) form drag associated with fast wind-following swell overpowers the positive surface shear stress. The magnitude of the form drag increases with the wavelength and slope and decreases with increasing wind speed, and the jet intensity in general increases with the magnitude of the surface form drag. The resulting negative vertical wind shear above the jet in turn enhances the turbulence aloft. The level of the wind maximum is found to be largely determined by the wavenumber and the ratio of the surface shear stress and form drag: the larger the magnitude of this ratio, the higher the altitude of the wind maximum. Although the simulated wind profile often closely follows the log law in the wave boundary layer, the surface stress derived from the logarithmic wind profile is significantly larger than the actual total surface stress in the presence of swell. Therefore, the Monin-Obukhov similarity theory is generally invalid over swell-dominated ocean. This is attributed to the wave-induced contribution to momentum flux, which decays roughly exponentially in the vertical and is largely independent of local wind shear.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jiang, Q.
Sullivan, Peter P.
Wang, S.
Doyle, J.
Vincent, L.
Publisher UCAR/NCAR - Library
Publication Date 2016-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:47:10.969263
Metadata Record Identifier edu.ucar.opensky::articles:18589
Metadata Language eng; USA
Suggested Citation Jiang, Q., Sullivan, Peter P., Wang, S., Doyle, J., Vincent, L.. (2016). Impact of swell on air-sea momentum flux and marine boundary layer under low-wind conditions. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d77s7qdz. Accessed 21 August 2025.

Harvest Source