Impact of the interaction between the quasi-2-day wave and tides on the ionosphere and thermosphere

The quasi-2 day wave (QTDW) can effectively interact with atmospheric tides in the mesosphere and lower thermosphere. We study the effect of this QTDW-tidal interaction on the ionosphere and thermosphere using the thermosphere-ionosphere-mesosphere electrodynamics general circulation model. This interaction reduces the amplitude of the migrating diurnal tide in the lower thermosphere by ~10 m/s in neutral winds and also generates sum and difference secondary waves in the lower thermosphere and E region ionosphere. As a result of the changed migrating diurnal tide and sum/difference secondary wave, vertical ion drift varies with local time at different longitudes by ~5 m/s. In addition, the changed migrating diurnal tide also modulates the thermospheric composition (O/N2). During a QTDW event, the ionosphere F2 region peak electron density (NmF2) is reduced due to the mixing effect of the QTDW dissipation; NmF2 also shows changes in local time variation due to the QTDW-tidal interaction. The sum and difference secondary waves can cause additional oscillations in vertical ion drift and ionospheric electron densities. The QTDW-tidal interaction is another mechanism by which the QTDW impacts the ionosphere and thermosphere, along with other mechanisms: QTDW modulation of the E region wind dynamo with a period of quasi-2 days and QTDW dissipation induced mixing in the thermosphere.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Yue, Jia
Wang, Wenbin
Ruan, Haibing
Chang, Loren
Lei, Jiuhou
Publisher UCAR/NCAR - Library
Publication Date 2016-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:37.324998
Metadata Record Identifier edu.ucar.opensky::articles:18617
Metadata Language eng; USA
Suggested Citation Yue, Jia, Wang, Wenbin, Ruan, Haibing, Chang, Loren, Lei, Jiuhou. (2016). Impact of the interaction between the quasi-2-day wave and tides on the ionosphere and thermosphere. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tm7crv. Accessed 30 June 2025.

Harvest Source