Impacts of extreme ultraviolet late phase of the solar flare on ionospheric electrodynamics

Previous investigations of ionospheric electrodynamical responses to solar flares primarily focused on the main phases (MPs) of solar flares. Typical solar irradiance models for driving global ionosphere models do not include the extreme ultraviolet (EUV) late phase (ELP) of flares, which was recently observed with new high-quality solar EUV spectra. Thus, it is still unclear how ionospheric electrodynamics respond to the flare ELP. Here, we analyzed the ionospheric electrodynamical response to the MP and ELP of the X9.3 flare on 2017 September 6, using observations from ground magnetometers, along with simulation results from an ionosphere–thermosphere coupled model. Observations indicated an intensification of the dayside eastward equatorial electrojet (EEJ) by approximately 12 nT at the ELP peak as compared to the quiet day reference. Additionally, the dayside eastward electric field increased due to the ELP, which is different from the reduction of dayside electric fields during MP. The upward E × B plasma drifts decreased by 2.5 m s –1 during MP but increased by 0.75 m s –1 during the ELP. Altitude-dependent responses of ionospheric conductivities to the ELP modulated the relative contribution of the E- and F-region wind dynamo to zonal electric fields, resulting in an overall increase in the daytime eastward electric fields. Furthermore, combined effects of electric fields and conductivities enhancements contributed to EEJ intensification during the ELP. This study enhances our understanding of how solar flares with ELP change global ionospheric electric fields and currents.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, X.
Liu, J.
Chen, J.
Qian, Liying
Chamberlin, P. C.
Chen, Y.
Kong, X.
Li, S.
Publisher UCAR/NCAR - Library
Publication Date 2024-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-10T19:58:12.143592
Metadata Record Identifier edu.ucar.opensky::articles:42526
Metadata Language eng; USA
Suggested Citation Liu, X., Liu, J., Chen, J., Qian, Liying, Chamberlin, P. C., Chen, Y., Kong, X., Li, S.. (2024). Impacts of extreme ultraviolet late phase of the solar flare on ionospheric electrodynamics. UCAR/NCAR - Library. https://n2t.net/ark:/85065/d7xd161z. Accessed 01 August 2025.

Harvest Source