Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System

Global Navigation Satellite System (GNSS) radio occultation (RO) provides plentiful sounding profiles over regions lacking conventional observations. The Gridpoint Statistical Interpolation (GSI) hybrid system for assimilating RO data is integrated in this study with the Model for Prediction Across Scales-Atmosphere (MPAS) to improve tropical cyclone forecasts. After the MPAS-GSI assimilation cycles, dynamical vortex initialization (DVI) that may effectively spin up the initial inner typhoon vortex through cycled model integration is implemented to improve the initial analysis fit to the best track position as well as maximum wind or pressure intensity for Typhoon Nepartak (2016) that moved northwestward toward southern Taiwan. During the cycling assimilation, assimilation with RO data improves the temperature and moisture analysis, and largely reduces the forecast errors compared to those without RO data assimilation. The two RO operators that assimilate local bending angle or refractivity produce similar analyses, but the temperature and moisture increments from bending angle assimilation are slightly larger than those from refractivity assimilation. The MPAS forecasts at 60-15 km resolution show that the typhoon track prediction is improved with RO data, especially using bending angle data. The reduction in track deviations is explained by the wavenumber-one potential vorticity budget for several forecasts associated with the track deflection near southern Taiwan. Assimilation of RO data has fewer impacts on the typhoon intensity forecast compared to the DVI that largely improves the initial and thus forecasted intensity of the typhoon but at the cost of a slightly degraded track. Use of the enhanced 3 km resolution in the typhoon path also further improved the forecasts with and without the DVI. The feasible performance of the MPAS-GSI system with the RO data impact is also illustrated for Typhoon Mitag (2019), that passed around northern Taiwan.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Chien, Tzu-Yu
Chen, Shu-Ya
Huang, Ching-Yuang
Shih, Cheng-Peng
Schwartz, Craig S.
Liu, Zhiquan
Bresch, Jamie
Lin, Jia-Yang
Publisher UCAR/NCAR - Library
Publication Date 2022-08-25T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:36:09.408377
Metadata Record Identifier edu.ucar.opensky::articles:25723
Metadata Language eng; USA
Suggested Citation Chien, Tzu-Yu, Chen, Shu-Ya, Huang, Ching-Yuang, Shih, Cheng-Peng, Schwartz, Craig S., Liu, Zhiquan, Bresch, Jamie, Lin, Jia-Yang. (2022). Impacts of Radio Occultation Data on Typhoon Forecasts as Explored by the Global MPAS-GSI System. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7fx7f83. Accessed 25 June 2025.

Harvest Source