Information length as a useful index to understand variability in the global circulation

With improved measurement and modelling technology, variability has emerged as an essential feature in non-equilibrium processes. While traditionally, mean values and variance have been heavily used, they are not appropriate in describing extreme events where a significant deviation from mean values often occurs. Furthermore, stationary Probability Density Functions (PDFs) miss crucial information about the dynamics associated with variability. It is thus critical to go beyond a traditional approach and deal with time-dependent PDFs. Here, we consider atmospheric data from the Whole Atmosphere Community Climate Model (WACCM) and calculate time-dependent PDFs and the information length from these PDFs, which is the total number of statistically different states that a system evolves through in time. Specifically, we consider the three cases of sampling data to investigate the distribution of information (information budget) along the altitude and longitude to gain a new perspective of understanding variabilities, correlation among different variables and regions. Time-dependent PDFs are shown to be non-Gaussian in general; the information length tends to increase with the altitude albeit in a complex form; this tendency is more robust for flows/shears than temperature. Much similarity among flows and shears in the information length is also found in comparison with the temperature. This means a strong correlation among flows/shears because of their coupling through gravity waves in this particular WACCM model. We also find the increase of the information length with the latitude and interesting hemispheric asymmetry for flows/shears/temperature, with the tendency of anti-correlation (correlation) between flows/shears and temperature at high (low) latitude. These results suggest the importance of high latitude/altitude in the information budget in the Earth's atmosphere, the spatial gradient of the information length being a useful proxy for information flow.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Kim, Eun-jin
Heseltine, James
Liu, Hanli
Publisher UCAR/NCAR - Library
Publication Date 2020-02-24T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:35:01.877660
Metadata Record Identifier edu.ucar.opensky::articles:23192
Metadata Language eng; USA
Suggested Citation Kim, Eun-jin, Heseltine, James, Liu, Hanli. (2020). Information length as a useful index to understand variability in the global circulation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7b85c9g. Accessed 25 June 2025.

Harvest Source