Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003

This study compares the performance of an ensemble Kalman filter (EnKF) with both the three-dimensional and four-dimensional variational data assimilation (3DVar and 4DVar) methods of the Weather Research and Forecasting (WRF) model over the contiguous United States in a warm-season month (June) of 2003. The data assimilated every 6 h include conventional sounding and surface observations as well as data from wind profilers, ships and aircraft, and the cloud-tracked winds from satellites. The performances of these methods are evaluated through verifying the 12- to 72-h forecasts initialized twice daily from the analysis of each method against the standard sounding observations. It is found that 4DVar has consistently smaller error than that of 3DVar for winds and temperature at all forecast lead times except at 60 and 72 h when their forecast errors become comparable in amplitude, while the two schemes have similar performance in moisture at all lead times. The forecast error of the EnKF is comparable to that of the 4DVar at 12 - 36-h lead times, both of which are substantially smaller than that of the 3DVar, despite the fact that 3DVar fits the sounding observations much more closely at the analysis time. The advantage of the EnKF becomes even more evident at 48 - 72-h lead times; the 72-h forecast error of the EnKF is comparable in magnitude to the 48-h error of 3DVar/4DVar.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhang, Meng
Zhang, Fuqing
Huang, Xiang-yu
Zhang, Xin
Publisher UCAR/NCAR - Library
Publication Date 2011-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:20.871274
Metadata Record Identifier edu.ucar.opensky::articles:10868
Metadata Language eng; USA
Suggested Citation Zhang, Meng, Zhang, Fuqing, Huang, Xiang-yu, Zhang, Xin. (2011). Intercomparison of an ensemble Kalman filter with three- and four-dimensional variational data assimilation methods in a limited-area model over the month of June 2003. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xg9rq8. Accessed 24 April 2024.

Harvest Source