Land use change exacerbates tropical South American drought by sea surface temperature variability

Observations of tropical South American precipitation over the last three decades indicate an increasing rainfall trend to the north and a decreasing trend to the south. Given that tropical South America has experienced significant land use change over the same period, it is of interest to assess the extent to which changing land use may have contributed to the precipitation trends. Simulations of the National Center for Atmospheric Research Community Atmosphere Model (NCAR CAM3) analyzed here suggest a non-negligible impact of land use on this precipitation behavior. While forcing the model by imposed historical sea surface temperatures (SSTs) alone produces a plausible north-south precipitation dipole over South America, NCAR CAM substantially underestimates the magnitude of the observed southern decrease in rainfall unless forcing associated with human-induced land use change is included. The impact of land use change on simulated precipitation occurs primarily during the local dry season and in regions of relatively low annual-mean rainfall, as the incidence of very low monthly-mean accumulations (<10 mm/month) increases significantly when land use change is imposed. Land use change also contributes to the simulated temperature increase by shifting the surface turbulent flux partitioning to favor sensible over latent heating. Moving forward, continuing pressure from deforestation in tropical South America will likely increase the occurrence of significant drought beyond what would be expected by anthropogenic warming alone and in turn compound biodiversity decline from habitat loss and fragmentation.

To Access Resource:

Questions? Email Resource Support Contact:

    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2011 American Geophysical Union.

Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email
Metadata Contact Organization UCAR/NCAR - Library

Author Lee, Jung-Eun
Lintner, Benjamin
Boyce, C.
Lawrence, Peter
Publisher UCAR/NCAR - Library
Publication Date 2011-10-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:55:10.548382
Metadata Record Identifier edu.ucar.opensky::articles:12102
Metadata Language eng; USA
Suggested Citation Lee, Jung-Eun, Lintner, Benjamin, Boyce, C., Lawrence, Peter. (2011). Land use change exacerbates tropical South American drought by sea surface temperature variability. UCAR/NCAR - Library. Accessed 04 October 2023.

Harvest Source