Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud-forming particles
To Access Resource:
Questions? Email Resource Support Contact:
-
opensky@ucar.edu
UCAR/NCAR - Library
| Resource Type | publication |
|---|---|
| Temporal Range Begin | N/A |
| Temporal Range End | N/A |
| Temporal Resolution | N/A |
| Bounding Box North Lat | N/A |
| Bounding Box South Lat | N/A |
| Bounding Box West Long | N/A |
| Bounding Box East Long | N/A |
| Spatial Representation | N/A |
| Spatial Resolution | N/A |
| Related Links |
Related Dataset #1 : ATom: L2 In Situ Measurements of Aerosol Microphysical Properties (AMP) Related Dataset #2 : ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS) Related Dataset #3 : ATom: L2 In Situ Measurements from NOAA Nitrogen Oxides and Ozone (NOyO3) Instrument Related Dataset #4 : DISCOVER-AQ Campaign |
| Additional Information | N/A |
| Resource Format |
PDF |
| Standardized Resource Format |
PDF |
| Asset Size | N/A |
| Legal Constraints |
Copyright 2021 American Geophysical Union. |
| Access Constraints |
None |
| Software Implementation Language | N/A |
| Resource Support Name | N/A |
|---|---|
| Resource Support Email | opensky@ucar.edu |
| Resource Support Organization | UCAR/NCAR - Library |
| Distributor | N/A |
| Metadata Contact Name | N/A |
| Metadata Contact Email | opensky@ucar.edu |
| Metadata Contact Organization | UCAR/NCAR - Library |
| Author |
Nair, A. A. Yu, F. Campuzano-Jost, P. DeMott, P. J. |
|---|---|
| Publisher |
UCAR/NCAR - Library |
| Publication Date | 2021-11-16T00:00:00 |
| Digital Object Identifier (DOI) | Not Assigned |
| Alternate Identifier | N/A |
| Resource Version | N/A |
| Topic Category |
geoscientificInformation |
| Progress | N/A |
| Metadata Date | 2025-07-11T16:09:53.254081 |
| Metadata Record Identifier | edu.ucar.opensky::articles:24922 |
| Metadata Language | eng; USA |
| Suggested Citation | Nair, A. A., Yu, F., Campuzano-Jost, P., DeMott, P. J., Levin, E. J. T., Jimenez, J. L., Peischl, J., Pollack, I. B., Fredrickson, C. D., Beyersdorf, A. J., Nault, B. A., Park, M., Yum, S. S., Palm, B. B., Xu, L., Bourgeois, I., Anderson, B. E., Nenes, A., Ziemba, L. D., Moore, R. H., Lee, T., Park, T., Thompson, C. R., Flocke, Frank M., Huey, L. G., Kim, M. J., Peng, Q.. (2021). Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud-forming particles. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d79c71wf. Accessed 05 November 2025. |
Harvest Source
- ISO-19139 ISO-19139 Metadata