Mechanisms of along-valley winds and heat exchange over mountainous terrain

The physical mechanisms leading to the formation of diurnal along-valley winds are investigated over idealized three-dimensional topography. The topography used in this study consists of a valley with a horizontal floor enclosed by two isolated mountain ridges on a horizontal plain. A diagnostic equation for the along-valley pressure gradient is developed and used in combination with numerical model simulations to clarify the relative role of various forcing mechanisms such as the valley volume effect, subsidence heating, and surface sensible heat flux effects. The full diurnal cycle is simulated using comprehensive model physics including radiation transfer, land surface processes, and dynamic surface-atmosphere interactions. The authors find that the basic assumption of the valley volume argument of no heat exchange with the free atmosphere seldom holds. Typically, advective and turbulent heat transport reduce the heating of the valley during the day and the cooling of the valley during the night. In addition, dynamically induced valley-plain contrasts in the surface sensible heat flux can play an important role. Nevertheless, the present analysis confirms the importance of the valley volume effect for the formation of the diurnal along-valley winds but also clarifies the role of subsidence heating and the limitations of the valley volume effect argument. In summary, the analysis brings together different ideas of the valley wind into a unified picture.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schmidli, Juerg
Rotunno, Richard
Publisher UCAR/NCAR - Library
Publication Date 2010-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:47:24.585901
Metadata Record Identifier edu.ucar.opensky::articles:10319
Metadata Language eng; USA
Suggested Citation Schmidli, Juerg, Rotunno, Richard. (2010). Mechanisms of along-valley winds and heat exchange over mountainous terrain. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7f47pk3. Accessed 18 July 2025.

Harvest Source