Mesoscale structural evolution of three tropical weather systems observed during PREDICT

Three well-observed Atlantic tropical weather systems that occurred during the 2010 hurricane season are analyzed. One case was former Tropical Storm Gaston that failed to redevelop into a tropical cyclone; the other two cases were developing storms Karl and Matthew. Geostationary satellite, multisensor-derived precipitation, and dropsondes from the National Science Foundation (NSF)-NCAR Gulfstream V (GV), NASA DC-8, and the NOAA Gulfstream IV (G-IV) and WP-3D Orion (P-3) aircraft are analyzed in a system-following frame to quantify the mesoscale dynamics of these systems. Gaston featured extensive dry air surrounding an initially moist core. Vertical shear forced a misalignment of midtropospheric and lower-tropospheric circulation centers. This misalignment allowed dry air to intrude above the lower-tropospheric center and severely limited the area influenced by deep moist convection, thus providing little chance of maintaining or rebuilding the vortex in sheared flow. By contrast, Karl and Matthew developed in a moister environment overall, with moisture increasing with time in the middle and upper troposphere. Deep moist convection was quasi-diurnal prior to genesis. For Karl, deep convection was initially organized away from the lower-tropospheric circulation center, creating a misalignment of the vortex. The vortex gradually realigned over several days and genesis followed this realignment within roughly one day. Matthew experienced weaker shear, was vertically aligned through most of its early evolution, and developed more rapidly than Karl. The evolutions of the three cases are interpreted in the context of recent theories of tropical cyclone formation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Davis, Christopher
Ahijevych, David
Publisher UCAR/NCAR - Library
Publication Date 2012-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:53:10.419820
Metadata Record Identifier edu.ucar.opensky::articles:11916
Metadata Language eng; USA
Suggested Citation Davis, Christopher, Ahijevych, David. (2012). Mesoscale structural evolution of three tropical weather systems observed during PREDICT. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7hx1dbx. Accessed 29 June 2025.

Harvest Source