Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields

Data collected by the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) in Taiwan are analyzed and used to infer storm microphysics in the ice phase of convective storms. Both simultaneous horizontal (H) and vertical (V) (SHV) transmit polarization data and fast-alternating H and V (FHV) transmit polarization data are used in the analysis. The SHV Zdr (differential reflectivity) data show radial stripes of biased data in the ice phase that are likely caused by aligned and canted ice crystals. Similar radial streaks in the linear depolarization ratio (LDR) are presented that are also biased by the same mechanism. Dual-Doppler synthesis and sounding data characterize the storm environment and support the inferences concerning the ice particle types. Small convective cells were observed to have both large positive and large negative Kdp (specific differential phase) values. Negative Kdp regions suggest that ice crystals are vertically aligned by electric fields. Since high |Kdp| values of 0.8° km⁻¹ in both negative and positive Kdp regions in the ice phase are accompanied by Zdr values close to 0 dB, it is inferred that there are two types of ice crystals present: 1) smaller aligned ice crystals that cause the Kdp signatures and 2) larger aggregates or graupel that cause the Zdr signatures. The inferences are supported with simulated ice particle scattering calculations. A radar scattering model is used to explain the anomalous radial streaks in SHV and LDR.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hubbert, John
Ellis, Scott
Chang, Wei-Yu
Rutledge, S.
Dixon, Michael
Publisher UCAR/NCAR - Library
Publication Date 2014-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:07:27.138043
Metadata Record Identifier edu.ucar.opensky::articles:14168
Metadata Language eng; USA
Suggested Citation Hubbert, John, Ellis, Scott, Chang, Wei-Yu, Rutledge, S., Dixon, Michael. (2014). Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7dj5gkp. Accessed 21 June 2025.

Harvest Source