Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparision with ARM observations and sensitivity experiments

A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program's Mixed-Phase Arctic Cloud Experiment (M-PACE) and to examine physical processes responsible for multilayer production and evolution. The CRM with a two-moment cloud microphysics is initialized with concurrent meteorological, aerosol, and ice nucleus measurements and is driven by time-varying large-scale advective tendencies of temperature and moisture and surface sensible and latent heat fluxes. The CRM reproduces the dominant occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations although the simulated first cloud layer is lower and the second cloud layer is thicker compared to observations. The aircraft measurements suggest that the CRM qualitatively captures the major characteristics in the vertical distribution and interperiod variation of liquid water content (LWC), droplet number concentration, total ice water content (IWC), and ice crystal number concentration (nis). However, the magnitude of LWC is overestimated and those of IWC and nis are underestimated. In particular, the simulated nis is one order of magnitude smaller than the observed. Sensitivity experiments suggest that both the surface fluxes and large-scale advection control the formation of the lower cloud layer while the large-scale advection initiates the formation of the upper cloud layer but the maintenance of multilayer structures relies on the longwave (LW) radiative effect. The LW cooling near cloud top produces a more saturated environment and a stronger dynamical circulation while cloud base radiative warming of the upper layer creates the stability gap between the two cloud layers. Both cloud layers are sensitive to ice-forming nuclei number concentration since ice-phase microphysics provides a strong sink of cloud liquid water mass.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Luo, Y.
Xu, K.
Morrison, Hugh
McFarquhar, G.
Wang, Z.
Zhang, G.
Publisher UCAR/NCAR - Library
Publication Date 2008-06-25T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:57:22.707352
Metadata Record Identifier edu.ucar.opensky::articles:6275
Metadata Language eng; USA
Suggested Citation Luo, Y., Xu, K., Morrison, Hugh, McFarquhar, G., Wang, Z., Zhang, G.. (2008). Multi-layer arctic mixed-phase clouds simulated by a cloud-resolving model: Comparision with ARM observations and sensitivity experiments. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7m908ws. Accessed 01 August 2025.

Harvest Source