Multiscale interactions in an idealized Walker circulation: Mean circulation and intraseasonal variability

A high-resolution cloud-resolving model (CRM) simulation is developed here for a two-dimensional Walker circulation over a planetary-scale domain of 40 000 km for an extended period of several hundred days. The Walker cell emerges as the time-averaged statistical steady state with a prescribed sinusoidal sea surface temperature (SST) pattern with a mean temperature of 301.15 K and a horizontal variation of 4 K. The circulation exhibits intraseasonal variability on a time scale of about 20 days with quasi-periodic intensification of the circulation and broadening of the convective regime. This variability is closely tied to synoptic-scale systems associated with expansion and contraction of the Walker circulation. An index for the low-frequency variability is developed using an empirical orthogonal function (EOF) analysis and by regressing various dynamic fields on this index. The low-frequency oscillation has four main stages: a suppressed stage with strengthened midlevel circulation, an intensification phase, an active phase with strong upper-level circulation, and a weakening phase. Various physical processes occurring at these stages are discussed as well as the impact of organized convective systems on the large-scale flow.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Slawinska, Joanna
Pauluis, Olivier
Majda, Andrew
Grabowski, Wojciech
Publisher UCAR/NCAR - Library
Publication Date 2014-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:45:27.020724
Metadata Record Identifier edu.ucar.opensky::articles:13373
Metadata Language eng; USA
Suggested Citation Slawinska, Joanna, Pauluis, Olivier, Majda, Andrew, Grabowski, Wojciech. (2014). Multiscale interactions in an idealized Walker circulation: Mean circulation and intraseasonal variability. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7tm7c1f. Accessed 15 June 2025.

Harvest Source