Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H2SO4, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp2 hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zaveri, R.
Berkowitz, C.
Brechtel, F.
Gilles, M.
Hubbe, J.
Jayne, J.
Kleinman, L.
Laskin, A.
Madronich, Sasha
Onasch, T.
Pekour, M.
Springston, S.
Thornton, J.
Tivanski, A.
Worsnop, D.
Publisher UCAR/NCAR - Library
Publication Date 2010-06-22T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-17T15:25:26.365365
Metadata Record Identifier edu.ucar.opensky::articles:10449
Metadata Language eng; USA
Suggested Citation Zaveri, R., Berkowitz, C., Brechtel, F., Gilles, M., Hubbe, J., Jayne, J., Kleinman, L., Laskin, A., Madronich, Sasha, Onasch, T., Pekour, M., Springston, S., Thornton, J., Tivanski, A., Worsnop, D.. (2010). Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7fq9x4s. Accessed 02 August 2025.

Harvest Source