Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing

Microphysical characteristics of premonsoon and monsoon deep cumuli over India observed by an instrumented aircraft are contrasted focusing on influences of environmental conditions and entrainment-mixing processes. Differences in the lower tropospheric temperature and moisture profiles lead to contrasting undiluted cloud buoyancy profiles around the cloud base, larger in the premonsoon case. It is argued that this affects the variation of the mean and maximum cloud droplet number concentrations and the droplet radius within the lowest several hundred meters above the cloud base. The conserved-variable thermodynamic diagram analysis suggests that entrained parcels originate from levels close to the observational level. Mixing processes and their impact on the droplet size distribution (DSD) are investigated contrasting 1 Hz and 10 Hz observations. Inhomogeneous-type mixing, likely because of unresolved small-scale structures associated with active turbulent stirring, is noted at cloud edge volumes where dilution is significant and DSDs shift toward smaller sizes with reduced droplet number concentrations due to complete evaporation of smaller droplets and partial evaporation of larger droplets. DSDs within cloud core volumes suggest that the largest droplets are formed in the least diluted volumes where raindrops can form at higher levels; no superadiabatic droplet growth is observed. The typical diluted parcel size is approximately 100-200 m for cloud edge volumes, and it is much smaller, 10–20 m, for cloud core volumes. Time scale analysis indicates the possibility of inhomogeneous type mixing within the diluted cloud edge volumes at spatial scales of a 100 m or more.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.

Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Bera, Sudarsan
Prabha, Thara V.
Grabowski, Wojciech W.
Publisher UCAR/NCAR - Library
Publication Date 2016-08-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2020-02-12T21:16:21.276232
Metadata Record Identifier edu.ucar.opensky::articles:18780
Metadata Language eng; USA
Suggested Citation Bera, Sudarsan, Prabha, Thara V., Grabowski, Wojciech W.. (2016). Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mp54zq. Accessed 29 February 2020.

Harvest Source