On the impact of additive noise in storm-scale EnKF experiments

Storm-scale ensemble Kalman filter (EnKF) studies routinely use methods to accelerate the spinup of convective structures when assimilating convective-scale radar observations. This typically involves adding coherent perturbations into analyses at regular intervals in regions where radar observations indicate convection is ongoing. Significant uncertainty remains as to the most effective use of these perturbations, including appropriate perturbation magnitudes, spatial scales, fields, and smoothing kernels, as well as flexible strategies that can be applied across a spectrum of convective events with negligible a priori tuning. Here, several idealized experiments were performed to elucidate the impact and sensitivity of adding coherent perturbations into storm-scale analyses of convection. Through the use of toy experiments, it is demonstrated that various factors exhibit substantial influence on the postsmoothed perturbation magnitudes, making tuning challenging. Several OSSEs were performed to document the impact of these perturbations on the analyses, particularly thermodynamic analyses within convection. The repeated addition of coherent perturbations produced temperature and moisture biases that are most pronounced in analyses of the surface cold pool and aloft near the tropopause, and eventually lead to biases in the dynamic fields. In an attempt to reduce these biases and make the noise procedure more adaptive, reflectivity innovations were used to restrict the addition of noise to areas where these innovations are large. This produced analyses with reduced thermodynamic biases and RMSE values comparable to the best-performing experiment where the noise magnitudes were manually adjusted. The impact of these findings on previous and future convective-scale EnKF analyses and forecasts are discussed.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sobash, Ryan A.
Wicker, L.
Publisher UCAR/NCAR - Library
Publication Date 2015-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:55:33.287429
Metadata Record Identifier edu.ucar.opensky::articles:16835
Metadata Language eng; USA
Suggested Citation Sobash, Ryan A., Wicker, L.. (2015). On the impact of additive noise in storm-scale EnKF experiments. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7b27wh2. Accessed 19 August 2025.

Harvest Source