Parallel inference for massive distributed spatial data using low-rank models

Due to rapid data growth, statistical analysis of massive datasets often has to be carried out in a distributed fashion, either because several datasets stored in separate physical locations are all relevant to a given problem, or simply to achieve faster (parallel) computation through a divide-and-conquer scheme. In both cases, the challenge is to obtain valid inference that does not require processing all data at a single central computing node. We show that for a very widely used class of spatial low-rank models, which can be written as a linear combination of spatial basis functions plus a fine-scale-variation component, parallel spatial inference and prediction for massive distributed data can be carried out exactly, meaning that the results are the same as for a traditional, non-distributed analysis. The communication cost of our distributed algorithms does not depend on the number of data points. After extending our results to the spatio-temporal case, we illustrate our methodology by carrying out distributed spatio-temporal particle filtering inference on total precipitable water measured by three different satellite sensor systems.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 Springer.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Katzfuss, M.
Hammerling, Dorit
Publisher UCAR/NCAR - Library
Publication Date 2017-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:51:09.369115
Metadata Record Identifier edu.ucar.opensky::articles:19665
Metadata Language eng; USA
Suggested Citation Katzfuss, M., Hammerling, Dorit. (2017). Parallel inference for massive distributed spatial data using low-rank models. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d79z96pf. Accessed 23 August 2025.

Harvest Source