Physics–dynamics coupling in weather, climate, and Earth system models: Challenges and recent progress

Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently. Once development is mature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model. As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherent model are here termed physics-dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problem with references to examples in the literature, to show how the problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/or models use variable resolutions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2018 American Meteorological Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gross, M.
Wan, H.
Rasch, P. J.
Caldwell, P. M.
Williamson, David
KLOCKE, D.
Jablonowski, C.
Thatcher, D. R.
Wood, N.
Cullen, M.
Beare, B.
Willett, M.
Lemarié, F.
Blayo, E.
Malardel, S.
Termonia, P.
Gassmann, A.
Lauritzen, Peter H.
Johansen, H.
Zarzycki, Colin
Sakaguchi, K.
Leung, R.
Publisher UCAR/NCAR - Library
Publication Date 2018-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:33:50.480874
Metadata Record Identifier edu.ucar.opensky::articles:22085
Metadata Language eng; USA
Suggested Citation Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, David, KLOCKE, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, Peter H., Johansen, H., Zarzycki, Colin, Sakaguchi, K., Leung, R.. (2018). Physics–dynamics coupling in weather, climate, and Earth system models: Challenges and recent progress. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7639sng. Accessed 02 August 2025.

Harvest Source