Quantifying heavy precipitation throughout the entire tropical cyclone life cycle

Tropical cyclones (TCs) and their associated precipitation can have devastating impacts on the areas affected, with outcomes ranging from mudslides to inland flash flooding. Previous studies have used a fixed radius around the TC to isolate storm-related precipitation. One previous study instead used a dynamic radius of 8 m s−1 winds, but the wind field of the TC can deteriorate or shift quickly after landfall or the onset of extratropical transition (ET). This study uses a dynamical radius derived from the 500-hPa geopotential height in and around the TC to define TC- and post-tropical cyclone (PTC)-related heavy precipitation, allowing for the analysis of precipitation with tropical origins after the official demise of the original TC. Climatologies are constructed, indicating a maximum in TC- and PTC-related heavy precipitation in the west North Pacific and a secondary maximum in the east North Pacific. PTC-related heavy precipitation accounts for as much as 40% of the annual heavy precipitation in the northwest portion of the west North Pacific basin and 3.13% of heavy precipitation globally. We observe that the major hurricane stage contributes on average 2.6% of the global TC- and PTC-related precipitation, while the less intense but more common tropical storm stages of the TC life cycle contribute 85.7% of this observed precipitation. This analysis framework can be further extended to assess model biases and climate projections of TC and PTC precipitation.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Bower, E.
Reed, K. A.
Ullrich, P. A.
Zarzycki, C. M.
Pendergrass, Angeline
Publisher UCAR/NCAR - Library
Publication Date 2022-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T15:59:04.634612
Metadata Record Identifier edu.ucar.opensky::articles:25836
Metadata Language eng; USA
Suggested Citation Bower, E., Reed, K. A., Ullrich, P. A., Zarzycki, C. M., Pendergrass, Angeline. (2022). Quantifying heavy precipitation throughout the entire tropical cyclone life cycle. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7f193jb. Accessed 19 August 2025.

Harvest Source