Quantifying the influence of cloud radiative feedbacks on Arctic surface warming using cloud locking in an Earth System Model

Understanding the influence of clouds on amplified Arctic surface warming remains an important unsolved research problem. Here, this cloud influence is directly quantified by disabling cloud radiative feedbacks or "cloud locking" within a state-of-the-art and well-documented model. Through comparison of idealized greenhouse warming experiments with and without cloud locking, the influence of Arctic and global cloud feedbacks is assessed. Global cloud feedbacks increase both global and Arctic warming by around 25%. In contrast, disabling Arctic cloud feedbacks has a negligible influence on both Arctic and global surface warming. Interestingly, the sum of noncloud radiative feedbacks does not change with either global or Arctic-only cloud locking. Notably, the influence of Arctic cloud feedbacks is likely underestimated, because, like many models, the model used here underestimates high-latitude supercooled cloud liquid. More broadly, this work demonstrates the value of regional and global cloud locking in a well-characterized model.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Middlemas, E. A.
Kay, J. E.
Medeiros, Brian M.
Maroon, E. A.
Publisher UCAR/NCAR - Library
Publication Date 2020-08-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:40.633254
Metadata Record Identifier edu.ucar.opensky::articles:23581
Metadata Language eng; USA
Suggested Citation Middlemas, E. A., Kay, J. E., Medeiros, Brian M., Maroon, E. A.. (2020). Quantifying the influence of cloud radiative feedbacks on Arctic surface warming using cloud locking in an Earth System Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71z47pg. Accessed 19 April 2024.

Harvest Source