Radar-based bayesian estimation of ice crystal growth parameters within a microphysical model

The potential for polarimetric Doppler radar measurements to improve predictions of ice microphysical processes within an idealized model-observational framework is examined. In an effort to more rigorously constrain ice growth processes (e.g., vapor deposition) with observations of natural clouds, a novel framework is developed to compare simulated and observed radar measurements, coupling a bulk adaptive-habit model of vapor growth to a polarimetric radar forward model. Bayesian inference on key microphysical model parameters is then used, via a Markov chain Monte Carlo sampler, to estimate the probability distribution of the model parameters. The statistical formalism of this method allows for robust estimates of the optimal parameter values, along with (non-Gaussian) estimates of their uncertainty. To demonstrate this framework, observations from Department of Energy radars in the Arctic during a case of pristine ice precipitation are used to constrain vapor deposition parameters in the adaptive habit model. The resulting parameter probability distributions provide physically plausible changes in ice particle density and aspect ratio during growth. A lack of direct constraint on the number concentration produces a range of possible mean particle sizes, with the mean size inversely correlated to number concentration. Consistency is found between the estimated inherent growth ratio and independent laboratory measurements, increasing confidence in the parameter PDFs and demonstrating the effectiveness of the radar measurements in constraining the parameters. The combined Doppler and polarimetric observations produce the highest-confidence estimates of the parameter PDFs, with the Doppler measurements providing a stronger constraint for this case.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Schrom, Robert S.
van Lier-Walqui, Marcus
Kumjian, Matthew R.
Harrington, Jerry Y.
Jensen, Anders A.
Chen, Yao-Sheng
Publisher UCAR/NCAR - Library
Publication Date 2021-02-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:14:45.762880
Metadata Record Identifier edu.ucar.opensky::articles:24409
Metadata Language eng; USA
Suggested Citation Schrom, Robert S., van Lier-Walqui, Marcus, Kumjian, Matthew R., Harrington, Jerry Y., Jensen, Anders A., Chen, Yao-Sheng. (2021). Radar-based bayesian estimation of ice crystal growth parameters within a microphysical model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7cr5xr2. Accessed 27 June 2025.

Harvest Source