Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research–thermosphere-ionosphere-mesosphere electrodynamics–general circulation model). The TIMED/SABER data analyzed were for the period from 2002 to 2007 during the declining phase of solar cycle 23. The observations show that the zonal mean temperature in the lower thermosphere oscillated with periods of near 9 and 13.5 days in the height range of 100–120 km. These oscillations were more strongly correlated with the recurrent geomagnetic activity than with the solar EUV variability of the same periods. The 9 day and 13.5 day oscillations of lower thermospheric temperature had greater amplitudes at high latitudes than at low latitudes; they also had larger amplitudes at higher altitudes, and the oscillations could penetrate down to ~105 km, depending on the strength of the recurrent geomagnetic activity for a particular time period. The data further show that the periodic responses of the lower thermospheric temperature to recurrent geomagnetic activity were different in the two hemispheres. In addition, numerical experiments have been carried out using the NCAR-TIME-GCM to investigate the causal relationship between the temperature oscillations and the geomagnetic activity and solar EUV variations of the same periods. Model simulations showed the same periodic oscillations as those seen in the observations when the real geomagnetic activity index, Kp, was used to drive the model. These numerical results show that recurrent geomagnetic activity is the main cause of the 9 day and 13.5 day variations in the lower thermosphere temperature, and the contribution from solar EUV variations is minor. Furthermore, we also found that consecutive coronal mass ejection events could cause long-duration enhancements in the lower thermospheric temperature that strengthen the 9 day and 13.5 day signals, and this kind of phenomenon mostly occurred between 2002 and 2005 during the declining phase of solar cycle 23.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Jiang, G.
Wang, Wenbin
Xu, J.
Yue, J.
Burns, Alan
Lei, J.
Mlynczak, M.
Russell, J.
Publisher UCAR/NCAR - Library
Publication Date 2014-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-12T00:08:15.430106
Metadata Record Identifier edu.ucar.opensky::articles:14225
Metadata Language eng; USA
Suggested Citation Jiang, G., Wang, Wenbin, Xu, J., Yue, J., Burns, Alan, Lei, J., Mlynczak, M., Russell, J.. (2014). Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d71z45d2. Accessed 24 August 2025.

Harvest Source