Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble

Stratospheric sulfate aerosol geoengineering has been proposed as a potential strategy to reduce the impacts of climate change. Here we investigate the impact of stratospheric aerosol geoengineering on the terrestrial hydrological cycle. We use the Geoengineering Large Ensemble, which involves a 20-member ensemble of simulations using the Community Earth System Model with the Whole Atmosphere Community Climate Model, in which sulfur dioxide (SO2) was injected into the stratosphere at four different locations, to maintain global mean surface temperature, and also the interhemispheric and equator-to-pole temperature gradients at values representative of 2020 ("baseline") under the Representative Concentration Pathway 8.5. In our simulations, annual mean land precipitation and evapotranspiration (ET) increase by 12% each under Representative Concentration Pathway 8.5. Under the Geoengineering Large Ensemble, the hydrological cycle is suppressed compared to the baseline, with end-of-century decreases of 1.4% (12 +/- 5 mm/year) and 3.3% (18 +/- 2 mm/year) in global mean, annual mean precipitation, and ET over land, respectively. Geoengineering effectively maintains global mean soil moisture under a high CO2 scenario, although there is significant regional variability. Summertime soil moisture is reduced by 42 +/- 11 kg/m(2) (3.5%) and 27 +/- 16 kg/m(2) (2.1%) in India and the Amazon, respectively, which is dominated by the decrease in precipitation. We also compare these regional changes in soil moisture under the Geoengineering Large Ensemble with an equatorial-only SO2 injection case and find a similar sign in residual changes, although the magnitude of the changes is larger in the equatorial run.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Cheng, W.
MacMartin, D. G.
Dagon, Katherine
Kravitz, B.
Tilmes, Simone
Richter, Jadwiga H.
Mills, Michael J.
Simpson, Isla R.
Publisher UCAR/NCAR - Library
Publication Date 2019-12-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T19:23:07.612417
Metadata Record Identifier edu.ucar.opensky::articles:23108
Metadata Language eng; USA
Suggested Citation Cheng, W., MacMartin, D. G., Dagon, Katherine, Kravitz, B., Tilmes, Simone, Richter, Jadwiga H., Mills, Michael J., Simpson, Isla R.. (2019). Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7dv1p21. Accessed 08 August 2025.

Harvest Source