Sources of error in dual-wavelength radar remote sensing of cloud liquid water content

Dual-wavelength ratio (DWR) techniques offer the prospect of producing high-resolution mapping of cloud microphysical properties, including retrievals of cloud liquid water content (LWC) from reflectivity measured by millimeter-wavelength radars. Unfortunately, noise and artifacts in the DWR require smoothing to obtain physically realistic values of LWC with a concomitant loss of resolution. Factors that cause inaccuracy in the retrieved LWC include uncertainty in gas and liquid water attenuation coefficients, Mie scattering due to large water droplets or ice particles, corruption of the radar reflectivities by noise and nonatmospheric returns, and artifacts due to mismatched radar illumination volumes. The error analysis presented here consists of both analytic and heuristic arguments; it is illustrated using data from the Mount Washington Icing Sensors Project (MWISP) and from an idealized simulation. In addition to offering insight into design considerations for a DWR system, some results suggest methods that may mitigate some of these sources of error for existing systems and datasets.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Williams, John
Vivekanandan, Jothiram
Publisher UCAR/NCAR - Library
Publication Date 2007-08-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:38:32.737075
Metadata Record Identifier edu.ucar.opensky::articles:6918
Metadata Language eng; USA
Suggested Citation Williams, John, Vivekanandan, Jothiram. (2007). Sources of error in dual-wavelength radar remote sensing of cloud liquid water content. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7j38stf. Accessed 28 June 2025.

Harvest Source