Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output: Planning for geostationary observations of atmospheric composition

We quantify both the spatial and temporal variability of column integrated O3, NO2, CO, SO2, and HCHO over the Baltimore/Washington, DC area using output from the Weather Research and Forecasting model with on-line chemistry (WRF/Chem) for the entire month of July 2011, coinciding with the first deployment of the NASA Earth Venture program mission Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Using structure function analyses, we find that the model reproduces the spatial variability observed during the campaign reasonably well, especially for O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument will be the first NASA mission to make atmospheric composition observations from geostationary orbit and partially fulfills the goals of the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. We relate the simulated variability to the precision requirements defined by the science traceability matrices of these space-borne missions. Results for O3 from 0 to 2 km altitude indicate that the TEMPO instrument would be able to observe O3 air quality events over the Mid-Atlantic area, even on days when the violations of the air quality standard are not widespread. The results further indicated that horizontal gradients in CO from 0 to 2 km would be observable over moderate distances (≥20 km). The spatial and temporal results for tropospheric column NO2 indicate that TEMPO would be able to observe not only the large urban plumes at times of peak production, but also the weaker gradients between rush hours. This suggests that the proposed spatial and temporal resolutions for these satellites as well as their prospective precision requirements are sufficient to answer the science questions they are tasked to address.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : DISCOVER-AQ P-3B Aircraft In-situ Trace Gas Measurements Version 1 - ICARTT File

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Follette-Cook, M.
Pickering, K.
Crawford, J.
Duncan, B.
Loughner, C.
Diskin, G.
Fried, A.
Weinheimer, Andrew
Publisher UCAR/NCAR - Library
Publication Date 2015-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2025-07-11T20:54:24.731648
Metadata Record Identifier edu.ucar.opensky::articles:16930
Metadata Language eng; USA
Suggested Citation Follette-Cook, M., Pickering, K., Crawford, J., Duncan, B., Loughner, C., Diskin, G., Fried, A., Weinheimer, Andrew. (2015). Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output: Planning for geostationary observations of atmospheric composition. UCAR/NCAR - Library. https://n2t.org/ark:/85065/d7w66n0d. Accessed 17 August 2025.

Harvest Source